Historical Antarctic mean sea ice area, sea ice trends, and winds in CMIP5 simulations

نویسندگان

  • Peter R. Gent
  • Susan Solomon
  • Irina Mahlstein
چکیده

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] In contrast to Arctic sea ice, average Antarctic sea ice area is not retreating but has slowly increased since satellite measurements began in 1979. While most climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive simulate a decrease in Antarctic sea ice area over the recent past, whether these models can be dismissed as being wrong depends on more than just the sign of change compared to observations. We show that internal sea ice variability is large in the Antarctic region, and both the observed and modeled trends may represent natural variations along with external forcing. While several models show a negative trend, only a few of them actually show a trend that is significant compared to their internal variability on the time scales of available observational data. Furthermore, the ability of the models to simulate the mean state of sea ice is also important. The representations of Antarctic sea ice in CMIP5 models have not improved compared to CMIP3 and show an unrealistic spread in the mean state that may influence future sea ice behavior. Finally, Antarctic climate and sea ice area will be affected not only by ocean and air temperature changes but also by changes in the winds. The majority of the CMIP5 models simulate a shift that is too weak compared to observations. Thus, this study identifies several foci for consideration in evaluating and improving the modeling of climate and climate change in the Antarctic region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of sea ice simulations in the CMIP5 models

The historical simulations of sea ice during 1979 to 2005 by the Coupled Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS) output data and Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) output data in this study. Forty-nine models, almost all of the CMIP5 climate models and earth sys...

متن کامل

Can natural variability explain observed Antarctic sea ice trends? New modeling evidence from CMIP5

[1] The recent observed positive trends in total Antarctic sea ice extent are at odds with the expectation of melting sea ice in a warming world. More problematic yet, climate models indicate that sea ice should decrease around Antarctica in response to both increasing greenhouse gases and stratospheric ozone depletion. The resolution of this puzzle, we suggest, may lie in the large natural var...

متن کامل

The sea-ice performance of the Australian climate models participating in the CMIP5

The sea-ice performance of the Australian climate models participating in the CMIP5 experiment, ACCESS1.0, ACCESS1.3 and CSIRO-Mk3.6, is assessed. Comparison with model output from five other international climate modelling centres and observational data are also included in the assessment process. The assessment takes into account modelled climatologies and interannual variability of the sea i...

متن کامل

On the discrepancy between observed and CMIP5 multi-model simulated Barents Sea winter sea ice decline

This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents Sea winter sea ice extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere sea ice concentration trends over the satellite period between observations and CMIP5 multi-model mean externally forced r...

متن کامل

The Southern Ocean in the Coupled Model Intercomparison Project phase 5

The Southern Ocean is an important part of the global climate system, but its complex coupled nature makes both its present state and its response to projected future climate forcing difficult to model. Clear trends in wind, sea-ice extent and ocean properties emerged from multi-model intercomparison in the Coupled Model Intercomparison Project phase 3 (CMIP3). Here, we review recent analyses o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013